Prüfstandlauf F1 Motor
Hier für alle interessierten ein interessanter Film über den Prüfstandlauf bzw. Rennsimulation eines F1 Motors.
Es handelt sich zwar um den RS24 von Renault, also noch ein Zehnzylinder. Ist aber trotzdem eindrücklich. Und in diesem Fall können wir wohl ausnahmsweise von Team- oder Herstellerdiskussionen absehen.
Und ja, Ton ein und auf LAUT...
Wer da nicht Hühnerhaut bekommt ist kein F1 Fan... 😉
23 Antworten
Re: Prüfstandlauf F1 Motor
Zitat:
Original geschrieben von aurian
Hier für alle interessierten ein interessanter Film über den Prüfstandlauf bzw. Rennsimulation eines F1 Motors.
BTW was wird den da in die "Ansaugrohre" eingespritzt.
Aber die Idee mit "Wetten Das" wäre schon gut. Müssten sich nur Leute finden, die 40 Melodien einstudieren😁
Grüße
globalwalker
Das ist Benzin. Eine sogenannte offene Einspritzung. Wird gelegentlich bei Motorrädern auch so gemacht.
Es wäre möglich dass es sich dabei um zusätzliche Einspritzdüsen handelt und weitere nach den DK sitzen. Vermutlich sogar.
Also da es meine Idee mit dem wetten dass war, bin ich natürlich dabei.
man bräuchte mehrer autos, die müßte man an einem lappi verbinen.
dann bräuchten wir einen der diieses programm schreibt, so das die jeweiligen autos die bestimmten daten erhalten.
und raten könnte man halt die aktuellen charts.
Ähnliche Themen
wenn man zuhört WIE der motor das lied singt wird einem ganz schnell klar das darin die kunst liegt. der motor hat innerhalb von sekundenbruchteilen die drehzahl erreicht welche durch die öffnungen der elektronisch gesteuerten drosselklappen möglich ist. ich bezweifle das es all zu viele gibt die einen motor bauen(entwickeln) können der dies so kann.
und genau darin liegt der reiz der f1.
setzt euch mal in eure gepimpten kisten, macht den motor an, leerlaufdrehzal, und tretet aufs gas. kurz bevor der motor in den begrenzer geht das gas loslassen.
und deshalb kann der singen, ein wahnsinn.
zu dem warum die das machen denke ich das ist wie bei:
warum leckt sich der hund am schwanz? weil ers kann ;-)
@aurian:
ich bin mir nicht sicher mit den motorenreglements der lezten jahre. früher mußte es ein saugmotor sein, deshalb die einspritzventile für den sprit ausserhalb der ansaugkanäle, vor der drosselklappe. dürfen die richtige einspritzer fahren oder bin ich auf dem holzweg?
ein teil des nebels könnte auch kondenswasser aufgrund des hohen luftdurchsatzes sein - der nebel steigt ja auch über der düse auf
Hm, möglich ist alles.
Ich vermute es handelt sich um zusätzliche Kraftstoffdüsen für den Vollastbereich. Sie nebeln ja auch nicht immer.
Logischerweise müssen aber nach den Drosselklppen noch weitere Düsen sitzen, für standgas und teillast.
Wie gesagt, im Motorradberreich wird gelegentlich mit dieser Düsenkonstellation gearbeitet, von da hab ich meine Vermutung abgeleitet.
@ Phlebiac
Bringst du ev. die Themen Saugmotor/aufgeladener Motor und Einspritzung/Vergaser durcheinander?
Saugmotoren wie auch aufgelandene Motoren können sowohl mit externer Gemsichbildung (Vergaser, Einspritzer) wie auch mit innerer Gemsichbildung (DI, FSI.. alles Einspritzer) betrieben werden.
Die F1 erlaubt aktuell nur Saugmotoren. Ich denke auch die innere Gemsichbildung ist nicht erlaubt.
Aufladung
Einspritzung (äussere)
Innere Gemsichbildung
Vergaser und Einspritzung
Direkteinspritzung ist in der F1 verboten, weiss der Geier warum.
Das Video von dem Renaultmotor zeigt Einspritzdüsen die mit einem Druck von rund 100 Bar einspritzen.
Das Ganze nennt sich "offene Saugrohreinspritzung", wie bei diesem Auto hier.
Diese Technik gab es aber schon in den 50er Jahren, ist also nichts neues, sondern nur perfektioniert worden.
LinkZitat:
Die erfolgreichen Mercedes-Motoren verfügten über acht Zylinder und eine direkte Benzin-Einspritzung. Damit waren die Tage der Vergaser-Motoren gezählt, auch wenn das System der Bosch-Direkteinspritzung später einer raffinierteren Technik (indirekte Saugrohreinspritzung) weichen musste.
.FIA Regulations in detail
ARTICLE 5: ENGINE
5.1 Engine specification:
5.1.1 Only 4-stroke engines with reciprocating pistons are permitted.
5.1.2 Subject only to Article 5.2, engine capacity must not exceed 2400 cc.
5.1.3 Supercharging is forbidden.
5.1.4 All engines must have 8 cylinders arranged in a 90º “V” configuration and the normal section of each cylinder must be circular.
5.1.5 Engines must have two inlet and two exhaust valves per cylinder.
Only reciprocating poppet valves are permitted.
The sealing interface between the moving valve component and the stationary engine component must be circular.
5.2 Alternative engines:
For 2006 and 2007 only, the FIA reserves the right to allow any team to use an engine complying with the 2005 engine regulations, provided its maximum crankshaft rotational speed does not exceed a limit fixed from time to time by the FIA so as to ensure that such an engine will only be used by a team which does not have access to a competitive 2.4 litre V8 engine.
5.3 Other means of propulsion:
5.3.1 Subject only to Article 5.2, the use of any device, other than the 2.4 litre, four stroke engine described in 5.1 above, to power the car, is not permitted.
5.3.2 The total amount of recoverable energy stored on the car must not exceed 300kJ, any which may be recovered at a rate greater than 2kW must not exceed 20kJ.
5.4 Engine dimensions:
5.4.1 Cylinder bore diameter may not exceed 98mm.
5.4.2 Cylinder spacing must be fixed at 106.5mm (+/- 0.2mm).
5.4.3 The crankshaft centreline must not be less than 58mm above the reference plane.
5.5 Weight and centre of gravity:
5.5.1 The overall weight of the engine must be a minimum of 95kg.
5.5.2 The centre of gravity of the engine may not lie less than 165mm above the reference plane.
5.5.3 The longitudinal and lateral position of the centre of gravity of the engine must fall within a region that is the geometric centre of the engine, +/- 50mm.
5.5.4 When establishing conformity with Article 5.5, the engine will include the intake system up to and including the air filter, fuel rail and injectors, ignition coils, engine mounted sensors and wiring, alternator, coolant pumps and oil pumps.
5.5.5 When establishing conformity with Article 5.5, the engine will not include liquids, exhaust manifolds, heat shields, oil tanks, water system accumulators, heat exchangers, hydraulic system (e.g. pumps, accumulators, manifolds, servo-valves, solenoids, actuators) except servo-valve and actuator for engine throttle control, fuel pumps nor any component not mounted on the engine when fitted to the car.
5.6 Variable geometry systems:
5.6.1 Variable geometry inlet systems are not permitted.
5.6.2 Variable geometry exhaust systems are not permitted.
5.6.3 Variable valve timing and variable valve lift systems are not permitted.
5.7 Fuel systems
5.7.1 The pressure of the fuel supplied to the injectors may not exceed 100 bar. Sensors must be fitted which directly measure the pressure of the fuel supplied to the injectors, these signals must be supplied to the FIA data logger.
5.7.2 Only one fuel injector per cylinder is permitted which must inject directly into the side or the top of the inlet port.
5.8 Electrical systems:
5.8.1 Ignition is only permitted by means of a single ignition coil and single spark plug per cylinder. The use of plasma, laser or other high frequency ignition techniques is forbidden.
5.8.2 Only conventional spark plugs that function by high tension electrical discharge across an exposed gap are permitted.
Spark plugs are not subject to the materials restrictions described in Articles 5.13 and 5.14.
5.8.3 The primary regulated voltage on the car must not exceed 17.0V DC. This voltage is defined as the stabilised output from the on-car charging system.
5.9 Engine actuators:
With the following exceptions hydraulic, pneumatic or electronic actuation is forbidden:
a) Electronic solenoids uniquely for the control of engine fluids;
b) Components providing controlled pressure air for a pneumatic valve system;
c) A single actuator to operate the throttle system of the engine.
5.10 Engine auxiliaries:
With the exception of electrical fuel pumps engine auxiliaries must be mechanically driven directly from the engine with a fixed speed ratio to the crankshaft.
5.11 Engine intake air:
5.11.1 Other than injection of fuel for the normal purpose of combustion in the engine, any device, system, procedure, construction or design the purpose or effect of which is any decrease in the temperature of the engine intake air is forbidden.
5.11.2 Other than engine sump breather gases and fuel for the normal purpose of combustion in the engine, the spraying of any substance into the engine intake air is forbidden.
5.12 Materials and Construction - Definitions:
5.12.1 X Based Alloy (e.g. Ni based alloy) – X must be the most abundant element in the alloy on a %w/w basis. The minimum possible weight percent of the element X must always be greater than the maximum possible of each of the other individual elements present in the alloy.
5.12.2 X-Y Based Alloy (e.g. Al-Cu based alloy) – X must be the most abundant element as in 5.12.1 above. In addition element Y must be the second highest constituent (%w/w), after X in the alloy. The mean content of Y and all other alloying elements must be used to determine the second highest alloying element (Y).
5.12.3 Intermetallic Materials (e.g. TiAl, NiAl, FeAl, Cu3Au, NiCo) – These are materials where the material is based upon intermetallic phases, i.e. the matrix of the material consists of greater then 50%v/v intermetallic phase(s). An intermetallic phase is a solid solution between two or more metals exhibiting either partly ionic or covalent, or metallic bonding with a long range order, in a narrow range of composition around the stoichiometric proportion.
5.12.4 Composite Materials – These are materials where a matrix material is reinforced by either a continuous or discontinuous phase. The matrix can be metallic, ceramic, polymeric or glass based. The reinforcement can be present as long fibres (continuous reinforcement); or short fibres, whiskers and particles (discontinuous reinforcement).
5.12.5 Metal Matrix Composites (MMC's) – These are materials with a metallic matrix containing a phase of greater than 2%v/v which is not soluble in the liquid phase of the metallic matrix.
5.12.6 Ceramic Materials (e.g. Al2O3, SiC, B4C, Ti5Si3, SiO2, Si3N4) – These are inorganic, non metallic solids.
5.13 Materials and construction – General:
5.13.1 Unless explicitly permitted for a specific engine component, the following materials may not be used anywhere on the engine:
a) Magnesium based alloys
b) Metal Matrix Composites (MMC's)
c) Intermetallic materials
d) Alloys containing more than 5% by weight of Beryllium, Iridium or Rhenium.
5.13.2 Coatings are free provided the total coating thickness does not exceed 25% of the section thickness of the underlying base material in all axes. In all cases the relevant coating must not exceed 0.8mm.
5.14 Materials and construction – Components:
5.14.1 Pistons must be manufactured from an aluminium alloy which is either Al-Si; Al-Cu; Al-Mg or Al-Zn based.
5.14.2 Piston pins must be manufactured from an iron based alloy and must be machined from a single piece of material.
5.14.3 Connecting rods must be manufactured from iron or titanium based alloys and must be machined from a single piece of material with no welded or joined assemblies (other than a bolted big end cap or an interfered small end bush).
5.14.4 Crankshafts must be manufactured from an iron based alloy.
No welding is permitted between the front and rear main bearing journals.
No material with a density exceeding 19,000kg/m3 may be assembled to the crankshaft.
5.14.5 Camshafts must be manufactured from an iron based alloy.
Each camshaft and lobes must be machined from a single piece of material.
No welding is allowed between the front and rear bearing journals.
5.14.6 Valves must be manufactured from alloys based on Iron, Nickel, Cobalt or Titanium.
Hollow structures cooled by sodium, lithium or similar are permitted.
5.14.7 Reciprocating and rotating components:
a) Reciprocating and rotating components must not be manufactured from graphitic matrix, metal matrix composites or ceramic materials. This restriction does not apply to the clutch and any seals;
b) Rolling elements of rolling element bearings must be manufactured from an iron based alloy;
c) Timing gears between the crankshaft and camshafts (including hubs) must be manufactured from an iron based alloy.
5.14.8 Static components:
a) Engine crankcases and cylinder heads must be manufactured from cast or wrought aluminium alloys.
No composite materials or metal matrix composites are permitted either for the whole component or locally.
b) Any metallic structure whose primary or secondary function is to retain lubricant or coolant within the engine must be manufactured from an iron based alloy or an aluminium alloy of the Al-Si, Al-Cu, Al-Zn or Al-Mg alloying systems.
c) All threaded fasteners must be manufactured from an alloy based on Cobalt, Iron or Nickel.
Composite materials are not permitted.
d) Valve seat inserts, valve guides and any other bearing component may be manufactured from metallic infiltrated pre-forms with other phases which are not used for reinforcement.
5.15 Starting the engine:
A supplementary device temporarily connected to the car may be used to start the engine both on the grid and in the pits.
5.16 Stall prevention systems:
If a car is equipped with a stall prevention system, and in order to avoid the possibility of a car involved in an accident being left with the engine running, all such systems must be configured to stop the engine no more than ten seconds after activation.